1,995 research outputs found

    Effect of NTHK1 Gene to Transgenic Alfalfa Leaf Enlargement

    Get PDF

    Apparent horizon and gravitational thermodynamics of Universe in the Eddington-Born-Infeld theory

    Full text link
    The thermodynamics of Universe in the Eddington-Born-Infeld (EBI) theory was restudied by utilizing the holographic-style gravitational equations that dominate the dynamics of the cosmical apparent horizon ΥA\Upsilon_{A} and the evolution of Universe. We started in rewriting the EBI action of the Palatini approach into the Bigravity-type action with an extra metric qμνq_{\mu\nu}. With the help of the holographic-style dynamical equations, we discussed the property of the cosmical apparent horizon ΥA\Upsilon_{A} including timelike, spacelike and null characters, which depends on the value of the parameter of state wmw_{m} in EBI Universe. The unified first law for the gravitational thermodynamics and the total energy differential for the open system enveloped by ΥA\Upsilon_{A} in EBI Universe were obtained. Finally, applying the positive-heat-out sign convention, we derived the generalized second law of gravitational thermodynamics in EBI universe.Comment: 23 pages, 0 figure

    Analytical controllability of deterministic scale-free networks and Cayley trees

    Full text link
    According to the exact controllability theory, the controllability is investigated analytically for two typical types of self-similar bipartite networks, i.e., the classic deterministic scale-free networks and Cayley trees. Due to their self-similarity, the analytical results of the exact controllability are obtained, and the minimum sets of driver nodes (drivers) are also identified by elementary transformations on adjacency matrices. For these two types of undirected networks, no matter their links are unweighted or (nonzero) weighted, the controllability of networks and the configuration of drivers remain the same, showing a robustness to the link weights. These results have implications for the control of real networked systems with self-similarity.Comment: 7 pages, 4 figures, 1 table; revised manuscript; added discussion about the general case of DSFN; added 3 reference

    Shortest Path and Distance Queries on Road Networks: An Experimental Evaluation

    Full text link
    Computing the shortest path between two given locations in a road network is an important problem that finds applications in various map services and commercial navigation products. The state-of-the-art solutions for the problem can be divided into two categories: spatial-coherence-based methods and vertex-importance-based approaches. The two categories of techniques, however, have not been compared systematically under the same experimental framework, as they were developed from two independent lines of research that do not refer to each other. This renders it difficult for a practitioner to decide which technique should be adopted for a specific application. Furthermore, the experimental evaluation of the existing techniques, as presented in previous work, falls short in several aspects. Some methods were tested only on small road networks with up to one hundred thousand vertices; some approaches were evaluated using distance queries (instead of shortest path queries), namely, queries that ask only for the length of the shortest path; a state-of-the-art technique was examined based on a faulty implementation that led to incorrect query results. To address the above issues, this paper presents a comprehensive comparison of the most advanced spatial-coherence-based and vertex-importance-based approaches. Using a variety of real road networks with up to twenty million vertices, we evaluated each technique in terms of its preprocessing time, space consumption, and query efficiency (for both shortest path and distance queries). Our experimental results reveal the characteristics of different techniques, based on which we provide guidelines on selecting appropriate methods for various scenarios.Comment: VLDB201

    Methyl 3-(4-chloro­phen­yl)-2-(1,3-dimethyl-2,5-dioxo-4-phenyl­imidazolidin-4-yl)-3-oxopropano­ate

    Get PDF
    The title compound, C21H19ClN2O5, is a tetra­substituted hydantoin derivative which contains an imidazolidine-2,4-dione core. The dihedral angle between the aromatic rings is 64.53 (14)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonding is found. An intra­molecular C—H⋯O inter­action also occurs
    corecore